Tungsten-based nanoparticles possess high density and capability to attenuate X-rays, thus have been studied as interesting candidates for the development of new-generation contrast-enhancing staining agents (CESAs) for computed tomography (CT). Polyoxotungstates, as polyoxoanions containing tungsten in its high oxidation state (W⁶⁺) were reported as promising CESA candidates to visualize long bones and kidney tissues [1]. However, some polyoxotungstates induced side effects in toxicity studies in vivo, which could limit their clinical application [2]. Thus, the aim of this study was to evaluate genotoxic effects in vitro of monolacunary Wells-Dawson polyoxotungstate, a₂₋₂K₁₀₋₁P₂₋₂W₁₋₁O₉₋₁.20H₂O (lacunary WD) that was found as a potential contrast agent for CT in our previous studies in situ and in vitro [1].

REFERENCES

